Страница 27 из 27 Физические основы передачи данных (Линии связи,)
Физические основы передачи данных
Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок, методах компрессии и методах коммутации.
Линии связи
Первичные сети, линии и каналы связи
При описании технической системы, которая передает информацию между узлами сети, в литературе можно встретить несколько названий: линия связи, составной канал, канал, звено. Часто эти термины используются как синонимы, и во многих случаях это не вызывает проблем. В то же время есть и специфика в их употреблении.
Звено (link) - это сегмент, обеспечивающий передачу данных между двумя соседними узлами сети. То есть звено не содержит промежуточных устройств коммутации и мультиплексирования.
Каналом (channel) чаще всего обозначают часть пропускной способности звена, используемую независимо при коммутации. Например, звено первичной сети может состоять из 30 каналов, каждый из которых обладает пропускной способностью 64 Кбит/с.
Составной канал (circuit) - это путь между двумя конечными узлами сети. Составной канал образуется отдельными каналами промежуточных звеньев и внутренними соединениями в коммутаторах. Часто эпитет «составной» опускается и термин «канал» используется для обозначения как составного канала, так и канала между соседними узлами, то есть в пределах звена.
Линия связи может использоваться как синоним для любого из трех остальных терминов.
На рис. показаны два варианта линии связи. В первом случае (а) линия состоит из сегмента кабеля длиной несколько десятков метров и представляет собой звено. Во втором случае (б) линия связи представляет собой составной канал, развернутый в сети с коммутацией каналов. Такой сетью может быть первичная сеть или телефонная сеть.
Однако для компьютерной сети эта линия представляет собой звено, так как соединяет два соседних узла, и вся коммутационная промежуточная аппаратура является прозрачной для этих узлов. Повод для взаимного непонимания на уровне терминов компьютерных специалистов и специалистов первичных сетей здесь очевиден.
Первичные сети специально создаются для того, чтобы предоставлять услуги каналов передачи данных для компьютерных и телефонных сетей, про которые в таких случаях говорят, что они работают «поверх» первичных сетей и являются наложенными сетями.
Классификация линий связи
Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Физическая среда передачи данных (физические носители информации) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В первом случае говорят о проводной среде, а во втором - о беспроводной.
В современных телекоммуникационных системах информация передается с помощью электрического тока или напряжения, радиосигналов или световых сигналов - все эти физические процессы представляют собой колебания электромагнитного поля различной частоты.
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Еще в недалеком прошлом такие линии связи были основными для передачи телефонных или телеграфных сигналов. Сегодня проводные линии связи быстро вытесняются кабельными. Но кое-где они все еще сохранились и при отсутствии других возможностей продолжают использоваться и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего.
Кабельные линии имеют достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической и, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных (и телекоммуникационных) сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов - неэкранированная витая пара (Unshielded Twisted Pair, UTP) и экранированная витая пара (Shielded Twisted Pair, STP), коаксиальные кабели с медной жилой, волоконно-оптические кабели. Первые два типа кабелей называют также медными кабелями.
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое разнообразие типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны широковещательного радио (длинных, средних и коротких волн), называемые также АМ-диапазонами, или диапазонами амплитудной модуляции (Amplitude Modulation, AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, использующие диапазоны очень высоких частот (Very High Frequency, VHF), для которых применяется частотная модуляция (Frequency Modulation, FM). Для передачи данных также используются диапазоны ультравысоких частот (Ultra High Frequency, UHF), называемые еще диапазонами микроволн (свыше 300 МГц). При частоте свыше 30 МГц сигналы уже не отражаются ионосферой Земли, и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, либо локальные или мобильные сети, где это условие выполняется.
Выбор и обоснование среды передачи данных
1. Общие характеристики среды передачи данных
Среды передачи данных разделяются на две категории. Кабельная среда передачи (носитель) - с центральным проводником, заключенным в пластиковую оболочку.
Кабели широко используются в небольших локальных сетях. Кабель обычно передает сигналы в нижней части электромагнитного спектра, что представляет собой обычный электрический ток и иногда радиоволны.
Беспроводная среда передачи данных предполагает использование более высоких частот электромагнитного спектра.
Это радиоволны, микроволны и инфракрасные лучи. Такая среда необходима для мобильных компьютеров или сетей, передающих данные на большие расстояния. Обычно она применяется в сетях предприятий и в глобальных сетях (в сотовом телефоне для передачи сигнала применяется микроволновый сигнал).
В сетях, охватывающих несколько географических пунктов, часто используется комбинация кабельной и беспроводной сред передачи данных.
При выборе оптимального типа носителя следует знать следующие характеристики среды передачи данных:
- стоимость;
- сложность установки;
- пропускную способность;
- затухание сигнала;
- подверженность электромагнитным помехам (EMI, Electro-Magnetic Interference);
- возможность несанкционированного прослушивания.
Стоимость. Стоимость каждой среды передачи данных следует сравнить с ее производительностью и доступными ресурсами.
Сложность установки. Сложность установки зависит от конкретной ситуации, но можно провести некоторое обобщенное сопоставление сред передачи данных. Одни типы носителей устанавливаются с помощью простых инструментов и не требуют большой подготовки, другие нуждаются в длительном обучении сотрудников, и их установку лучше предоставить профессионалам.
Пропускная способность. Возможности среды передачи данных обычно оцениваются по полосе пропускания. В коммуникациях понятие "полоса пропускания" означает диапазон частот, пропускаемых средой передачи данных. В сетях она оценивается по числу бит, которые можно передать через данный носитель в секунду. На полосу частот кабеля влияют также методы передачи сигналов.
Число узлов. Важной характеристикой сети является число компьютеров, которые можно легко подключить к сетевым кабелям. Каждая сетевая кабельная система имеет естественное для нее число узлов, превышение которого требует применения специальных устройств: мостов, маршрутизаторов, повторителей и концентраторов, позволяющих расширить сеть.
Затухание сигналов. При передаче электромагнитные сигналы слабеют. Это явление называется затуханием.
Электромагнитные помехи. Электромагнитные помехи (EMI) влияют на передаваемый сигнал. Они вызываются внешними электромагнитными волнами, искажающими полезный сигнал, что затрудняет его декодирование принимающим компьютером. Некоторые среды передачи данных более подвержены электромагнитным помехам, чем другие. Помехи называют также шумами.
В качестве среды передачи данных в электронной связи можно использовать:
· коаксиальный кабель;
· витую пару проводов (twisted pair);
· волоконно оптический кабель;
· инфракрасное излучение;
· микроволновый диапазон радиоэфира;
· радиодиапазон эфира.
На сегодняшний день подавляющая часть компьютерных сетей в большинстве случаев для соединения использует провода или кабели.
Так, фирма Belden, ведущий производитель кабелей, публикует каталог, где предлагает более 2200 их типов. К счастью, в большинстве сетей применяются только три основные группы кабелей:
1. коаксиальный кабель (coaxial cable);
2. витая пара (twisted pair):
неэкранированная (Unshielded Twisted Pair, UTP);
экранированная (Shielded Twisted Pair, STP);
3. оптоволоконный кабель (fiber optic).
2. Кабели на основе витых пар
Витые пары проводов используются в самых дешевых и на сегодняшний день, пожалуй, самых популярных кабелях.
Кабель на основе витых пар представляет собой несколько пар скрученных изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки.
Обычно в кабель входят две или четыре витые пары. Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также слабой защищенностью от подслушивания с целью, например, промышленного шпионажа.
Перехват передаваемой информации возможен как с помощью контактного метода (посредством двух иголочек, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Для устранения этих недостатков применяется экранирование.
В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk - перекрестные наводки). Естественно, экранированная витая пара гораздо дороже, чем неэкранированная, а при ее использовании необходимо применять и специальные экранированные разъемы, поэтому встречается она значительно реже, чем неэкранированная витая пара.
Основные достоинства неэкранированных витых пар - простота монтажа разъемов на концах кабеля, а также простота ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей.
Согласно стандарту EIA/TIA 568 существуют пять категорий кабелей на основе неэкранированной витой пары (UTP).
3. Коаксиальные кабели
Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку.
Коаксиальный кабель до недавнего времени был распространен наиболее широко, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), а также более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до 1 км и выше).
К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне.
Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.
Основное применение коаксиальный кабель находит в сетях с топологией типа "шина".
При заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, то есть их сопротивление должно быть равно волновому сопротивлению кабеля.
Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.
Существует два основных типа коаксиального кабеля:
тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;
толстый (thick) кабель, имеющий диаметр около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен более современным тонким кабелем.
Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, так как в нем сигнал затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения.
Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования, а для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт - как с центральной жилой, так и с экраном.
Толстый кабель примерно вдвое дороже, чем тонкий. Поэтому тонкий кабель применяется гораздо чаще.
Стоимость в расчете на место. Тонкий коаксиальный кабель имеет более низкую цену в расчете на рабочую станцию - около $ 25. Можно приобрести эти кабели с уже подключенными разъемами.
Проложить такие кабели сможет любой - они просто соединяются цепочкой от компьютера к компьютеру.
Прокладка толстого коаксиального кабеля обычно стоит порядка $ 50 на станцию. Кроме того, для каждой станции потребуются трансиверы (около $ 100).
Ограничения по расстоянию. Общая длина шины на тонком коаксиальном кабеле ограничена 185 м. Толстый коаксиальный кабель имеет общее ограничение в 500 м (в структурах без повторителей).
4. Оптоволоконные кабели
Оптоволоконный (он же - волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля.
Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.
Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна.
Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации.
Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений.
Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как это требует нарушения целостности кабеля.
Теоретически возможная полоса пропускания такого кабеля достигает величины 10 ГГц, что несравнимо выше, чем у любых электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается.
Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км. Самый главный из них - высокая сложность монтажа.
Хотя оптоволоконные кабели и допускают разветвление сигналов (для этого выпускаются специальные разветвители на 2-8 каналов), как правило, их используют для передачи данных только в одном направлении, между одним передатчиком и одним приемником.
Чувствителен он и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, т.е. увеличивается затухание сигнала. Оптоволоконные кабели чувствительны также к механическим воздействиям (удары, ультразвук) - так называемый микрофонный эффект. Для его уменьшения используют мягкие звукопоглощающие оболочки.
Применяют оптоволоконный кабель только в сетях с топологией "звезда" и "кольцо". Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети.
Существуют два различных типа оптоволоконных кабелей:
многомодовый (или мультимодовый) кабель - более дешевый, но менее качественный;
одномодовый кабель - более дорогой, но имеющий лучшие характеристики.
Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм).
В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62,5/125). Длина волны света в многомодовом кабеле равна 0,85 мкм.
Допустимая длина кабеля достигает 2-5 км.
Типичная величина задержки для наиболее распространенных кабелей составляет 4-5 нс/м.
Ограничения по расстоянию. В Ethernet 10Base-FL расстояние многомодового волоконно-оптического кабеля ограничивается 2000 м, а при использовании Fast Ethernet 100Base-F - 400 м.
Оба ограничения связаны с временными характеристиками Ethernet, а не со свойствами самого кабеля.
Предел пропускной способности для современных волоконно-оптических кабелей составляет 622 Мбит/с на расстоянии 1000 м. При каждом сокращении длины кабеля вдвое его полоса пропускания удваивается.
Радиоканал использует передачу информации с использованием радиоволн, поэтому он может обеспечить связь на многие десятки, сотни и даже тысячи километров.
Скорость передачи может достигать десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования). Однако в локальных сетях радиоканал не получил широкого распространения из-за довольно высокой стоимости передающих и приемных устройств, низкой помехозащищенности, полного отсутствия секретности передаваемой информации и низкой надежности связи.
А вот для глобальных сетей радиоканал часто является единственно возможным решением, так как позволяет с помощью спутников-ретрансляторов сравнительно просто обеспечить связь со всем миром. Используют радиоканал и для связи двух и более локальных сетей, находящихся далеко друг от друга, в единую сеть.
Таблица 1
900 МГц с 1 к! ре дачей сигнала в широком спектре |
Такие решения обычно обеспечивают полосу пропускания 2 Мбит/с на расстояние в 5 000 м. Эти радиосети функционируют во многом аналогично сотовым телефонам и не требуют расположения передатчика и приемника в зоне прямой видимости. Стоимость их составляет, как правило, около $ 5 000 на станцию |
|
с передачей в широком |
Использование диапазона 2,4 ГГц лицензируется FCC, и в настоящее время планируется выпуск устройств, которые будут работать в данном диапазоне |
|
с передачей в широком |
Решения в диапазоне 5,8 ГГц обеспечивают передачу данных со скоростью около 6 Мбит/с на расстояние до 244 м. Эти устройства потребляют мало электроэнергии и обеспечивают большую пропускную способность, чем 900 МГц-варианты, но не подходят для связи на значительные расстояния. Стоимость составляет около $ 1 000 на станцию |
|
Микроволновая передача на частоте 23 ГГц |
Микроволновая передача на частоте 23 ГГц обладает среди беспроводных решений наилучшими характеристиками в плане производительности и расстояния. Такие решения реализуются по схеме "точка-точка", а приемник и передатчик должны находиться в зоне прямой видимости. Они позволяют передавать данные со скоростью 6 Мбит/с на расстояние до 50 км, но очень подвержены влиянию погоды и достаточно дороги. Стоимость в расчете на станцию составляет обычно $ 15 000 |
Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение (подобно пульту дистанционного управления домашнего телевизора).
Главное его преимущество по сравнению с радиоканалом - нечувствительность к электромагнитным помехам, что позволяет применять его, например, в производственных условиях.
Правда, в данном случае требуется довольно высокая мощность передачи, чтобы не влияли никакие другие источники теплового (инфракрасного) излучения. Плохо работает инфракрасная связь и в условиях сильной запыленности воздуха.
Предельные скорости передачи информации по инфракрасному каналу не превышают 5-10 Мбит/с.
Инфракрасные каналы делятся на две группы.
Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Протяженность канала прямой видимости может достигать нескольких километров.
Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не страшны, но связь может осуществляться только в пределах одного помещения.
Вопрос Эволюция вычислительных систем
1) Системы пакетной обработки:
1950-ые годы – появление первых компьютеров.
Системы пакетной обработки, строились на базе мэйнфрейма - мощного и надежного компьютера универсального назначения. У пользователей перфокарты, содержащие данные и команды программ, операторы вводили эти карты в компьютер, а распечатанные результаты получали на следующий день.
Максимизация эффективности использования вычислительной мощности
Пренебрежение интересами пользователей
2) Многотерминальная система
Распределенный ввод-вывод данных.
Централизованная обработка.
1960-е годы появление многотерминальных систем разделения времени.
Прототип ЛВС.
Компьютер отдавался в распоряжение сразу нескольким пользователям, у каждого терминал, время реакции ВС достаточно мало.
Вычислительные сети
ВС– это совокупность компьютеров, соединенных линиями связи (кабели, сетевые адаптеры, телекоммуникационное оборудование).
Классификация сетей по территориальному признаку
LAN - MAN - WAN
Глобальные сети - Wide Area Networks (WAN).
Передача данных на сотни и тысячи километров
Хронологически появились первыми (50е-60е гг.)
Эволюционировали из телефонных сетей
Первоначально были медленными и ненадежными
Сегодня WAN:
Представляют собой кольца или backbone
Основная скорость 2.5 Gbit/s
Распространены решения 10-Gbit/s, 40-Gbit/s
Применяются сложные процедуры контроля и восстановления данных
Локальные сети - Local Area Networks (LAN).
Сосредоточены на территории 1-2 км.
Скорость до 10 Гбит/с
Широкий спектр услуг
Важнейший этап развития – становление стандартных технологий LAN: Ethernet, Token Ring, FDDI.
Городские сети - Metropolitan Area Networks (MAN)
Расстояния в несколько десятков километров
Более дешевые по сравнению с WAN
Скорости соединения 1-40 Gbit/s
Используются для объединения существующих LAN и выхода в WAN
Современные тенденции
Глобальные сети близко подбираются по качеству к локальным
2) В ЛС стали использоваться коммутаторы, маршрутизаторы, шлюзы => возможность построения сложных сетей
Вопрос. Семиуровневая модель OSI.
Физический уровень
Физический уровень определяет электротехнические, механические, процедурные и
функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.Единица данных: Бит (bit)
Канальный уровень
Канальный уровень обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации, топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации. Единица данных: Кадр (frame)
Сетевой уровень
Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах.
В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом).
Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих
Маршрутов.Единица данных: Пакет (packet)
Транспортный уровень
Заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).Единица данных: Дейтаграмма/Блок данных (datagramm)
Сеансовый уровень
Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. Сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Единица данных: Сообщение (message)
Представительный уровень
Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.
Единица данных: Сообщение (message)
Прикладной уровень
Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д.
Единица данных: Сообщение (message)
При продвижении пакета данных по уровням сверху вниз каждый новый уровень добавляет к пакету свою служебную информацию в виде заголовка и, возможно, трейлера (информации, помещаемой в конец сообщения). Эта операция называется инкапсуляцией данных верхнего уровня в пакете нижнего уровня
вопрос. Классификация сред передачи данных.
Под средой передачи данных понимают физическую субстанцию, по которой происходит передача электрических сигналов, использующихся для переноса той или иной информации, представленной в цифровой форме.
Естественная среда - это существующая в природе среда – Не естеств. – специально созданная(кабели и т.п)
Естественные среды
- Атмосфера Наибольшее распространение в качестве носителей данных в атмосфере получили электромагнитные волны.
- Радиоволны - электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны больше 100 мкм).
- Инфракрасное излучение и видимый свет(лазер)
Искусственные среды Основные виды кабелей: волоконно-оптический (fiber), коаксиал (coaxial) и витая пара (twisted pair). При этом и коаксиал и витая пара для передачи сигналов используют металлический проводник, а волоконно-оптический кабель - световод, сделанный из стекла или пластмассы.
Коаксиальный кабель
Важное достоинство - его способность передавать в один и тот же момент множество сигналов. Каждый такой сигнал называется каналом. Все каналы организуются на разных частотах, поэтому они не мешают друг другу. Он обладает широкой полосой пропускания; это означает, что в ней можно организовать передачу трафика на высоких скоростях. Он также устойчив к электромагнитным помехам и способен передавать сигналы на большое расстояние.
Витая пара
Кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание осуществляется для уменьшения внешних наводок.
Преимущества: более тонкий,более гибкий, проще устанавливать, недорог.
Недостатками: сильное воздействие внешних электромагнитных наводок, возможность утечки информации,
сильное затухание сигналов.
Неэкранированная витая пара (UTP)
САТ5(полоса частот 100 МГц) - 4пары, до 100 Мбит/с при использовании 2-х пар и до 1000 Мбит/с при использовании 4-х пар, является самым распространённым сетевым носителем, использующимся в компьютерных сетях до сих пор.
Экранированная витая пара (STP)
Фольгированная витая пара (FTP)
Фольгированная экранированная витая пара (SFTP)
Похожая информация.
Понятие среды передачи данных
Под средой передачи данных следует понимать набор оборудования с помощью
Которого осуществляется взаимодействие между участниками соединения в рамках
Сеанса связи.
В самом простом случае среда передачи может быть реализована в виде кабеля
(единственного или в составе группы) и/или использовать какой либо из видов
Беспроводных технологий.
Для использовании кабеля в компьютерной сети должны быть однозначно описаны:
Тип кабельной системы и ее физические характеристики;
Формы и уровни информационного сигнала;
Способы разветвления среды передачи и подключения к ней;
Требования, выставляемые к сетевому оборудованию.
При использовании беспроводных технологий ограничений и требований еще больше,
Поскольку каждая из этих сред имеет особые способы кодирования, декодирования и
Применения сигнала в среде.
Обычно среда передачи работает в одном из следующих режимов:
Симплексная передача. Однонаправленный канал, сигналы проходят по нему всегда
Только в одном направлении.
Полудуплексная передача. Сигналы могут передаваться в обоих направлениях по
Единственному каналу связи, но в каждый момент времени сигналы передаются только
В одну сторону.
Дуплексная передача. Данный способ реализует полноценную двустороннюю связь по
Единственному каналу связи.
Свойства среды передачи определяют уровень защиты передаваемых сигналов от
Помех. Помехи бывают следующих типов:
Электромагнитные помехи представляют собой вторжение постороннего
Электромагнитного сигнала, нарушающего форму полезного сигнала. Когда в полезный
Сигнал добавляются внешние помехи, принимающий компьютер не может правильно
Интерпретировать сигнал.
Радиочастотные помехи представляют собой сигналы радиопередатчиков и других
Устройств, генерирующих сигналы на радиочастотах. К ним относятся также
Процессоры и дисплеи компьютеров. Радиочастотным считается электромагнитное
Излучение на частотах от 10 КГц до 100 ГГц. Излучение на частотах от 2 до 10 ГГц
Называется также микроволновым.
Влияние радиочастотных помех устраняется с помощью помехозащитных фильтров,
Применяемых в различных типах сетей.
Перекрестные помехи. К этому типу помех относятся сигналы проводов,
Расположенных на расстоянии нескольких миллиметров друг от друга. Протекающий по
Проводу электрический ток создает электромагнитное поле, которое генерирует
Сигналы в другом проводе, расположенном рядом. Довольно часто, разговаривая по
Телефону, можно услышать приглушенные разговоры других людей. Причиной этого
Являются перекрестные помехи.
Перекрестные помехи значительно уменьшаются, если скрутить два провода, как это
Сделано в витой паре. Чем больше витков приходится на единицу длины, тем меньше
Влияние помех.
Затухание сигналов. Проходя по кабелю, электрические и оптические сигналы
Становятся все слабее. Чем больше расстояние до источника, тем слабее сигнал.
Такое ослабление сигнала с расстоянием называется затуханием сигнала. Затухание
Является причиной того, что в спецификациях различных сетевых архитектур
Указывается ограничение на длину кабеля. Если это ограничение соблюдается, то
Эффект затухания не повлияет на нормальную работу канала связи.
Различные кабельные системы имеют различные допуски по диапазону рабочих частот
И скорости затухания сигнала (рисунок 1).
При увеличении частоты затухание увеличивается, потому что, чем выше частота
Сигнала, тем интенсивнее рассеивание его электромагнитной энергии в окружающее
Пространство. При увеличении частоты сам провод превращается из носителя сигнала
В антенну, рассеивающую его энергию в пространство.
Все стандарты относящиеся к среде передачи данных описываются на физическом
Уровне модели OSI.
На физическом уровне обычно применяется один из следующих четырех типов среды передачи:
Кабель “витая пара” (симметричный кабель);
Коаксиальный кабель (тонкий или толстый);
Оптоволоконный кабель;
Окружающее пространство.
Каждая из этих сред отличается друг от друга необходимым оборудованием, пропускной способностью, помехоустойчивостью, максимальной протяженностью, сложностью установки, собственником инфраструктуры и многими другими параметрами. Характеристики сред будем рассматривать со следующих основных четырех точек зрения: пропускной способности, помехоустойчивости, сложности установки, популярности среди пользователей. Общее впечатление с этих позиций дает табл.5.1.
Таблица 5.1
Сравнительные характеристики сред передачи данных
Пропускная способность – это область (спектр) частот гармонических колебаний, пропускаемых средой передачи, т. е. полоса пропускания. Полоса пропускания измеряется в герцах, а скорость передачи – в битах в секунду. Ширина полосы пропускания среды должна быть достаточной для прохождения существенных амплитуд частотного спектра сигналов. При повышении спектра полосы пропускания, например, за счет возросшей частоты сигналов, среда может не успевать изменять свое энергетическое состояние, что и приведет к искажению сигналов. Мы уже отмечали границы полосы пропускания кабельных сред (см. рис.3.2). Расширим эту схему использованием окружающего пространства различными владельцами, как показано на рис.5.1.
Скорость пропускания зависит не только от ширины полосы, но и от способов модуляции и кодирования. Например, передача последовательности одинаковых цифр манчестерским кодом идет на частоте вдвое большей, чем потенциальным кодом без возвращения к нулю.
Рис. 5.1. Полосы пропускания, закрепленные за различными службами
С пропускной способностью связана такая характеристика, как способность к широковещанию. Эта способность определяется, в основном, конструкцией и материалом среды передачи. “Витая пара” – для двухточечной связи, коаксиал – для широковещания.
Помехозащищенность среды также зависит от конструкции. Она измеряется отношением мощности сигнала к мощности шума. Чем больше это отношение (измеряется в децибелах), тем выше помехоустойчивость. Качественные оценки этого параметра уже даны в табл. 5.1.
При распространении в среде сигнал любой частоты теряет свою мощность из-за рассеивания или излучения. Затухание сигнала определяет максимальную допустимую протяженность среды при фиксированных мощности передатчика и чувствительности приемника. Для увеличения протяженности обычно применяются усилители мощности, повторители, ретрансляторы.
Измеряется затухание в децибелах как отношение мощности сигнала в начале и в конце единицы длины среды передачи (обычно 1 км) на фиксированной частоте передачи.
Чем толще кабель, тем труднее его прокладывать (требуется больший радиус закругления). Но более толстые проводники обладают меньшим затуханием и допускают большую длину передачи без применения дополнительного оборудования.
Стоимость среды передачи - стоимость проектно-монтажных работ по строительству этой линии и затрат на ее эксплуатацию. Стоимость является определяющим фактором популярности применения той или иной среды.
Рассмотрим характеристики конкретных сред.
Кабель “витая пара” состоит из двух изолированных проводников, перевитых между собою. По определенной частоте витков, типу изоляции (бумага, шелк, поливинил) и некоторым другим параметрам кабель “витая пара” разделяется на несколько категорий. В целом, чем выше категория кабеля, тем больший объем информации по нему можно передать, тем меньше перекрестные наводки между проводниками (больше витков на 1 м погонный кабеля), тем он дороже. По сравнению с другими средами “витая пара” обладает меньшей пропускной способностью и сравнительно низкой помехозащищенностью. Вместе с тем, кабель “витая пара” прост в установке и является безусловным лидером в реализации Физического уровня по популярности.
В соответствии со стандартом США EIA/TIA – 568А по проектированию и созданию Структурированных Кабельных Систем (СКС) допускается применение четырех типов кабелей. Наиболее популярным из них является кабель неэкранированный с витыми парами из медных проводников UTP (Unsielded Twisted Pair). Категории 3, 4, 5 этого кабеля поддерживают рабочие частоты 16, 20 и 100 МГц. Соответствие выпускаемых промышленностью кабелей предъявляемым требованиям устанавливается сертификатом. В США такого рода сертификацию проводит независимая организация UL по двум направлениям: по электробезопасности и по техническим характеристикам. Классификация кабелей различных фирм – производителей по уровням, соответствующая стандарту качества ISO 9002, приведена в табл. 5.2.
Таблица 5.2
Классификация кабелей различных производителей
Рабочая полоса частот (скорость передачи) | Фирма – производитель | |||
Anixter | UL | EIA/TIA | AT&T | |
Передача речи, данных (до 20 кбит/с) | Level 1 | Level І | - | - |
1 МГц (1 Мбит/с) | Level 2 | Level ІІ | - | - |
16 МГц (16 Мбит/с) | Level 3 | Level ІІІ | Category 3 | Category ІІІ |
20 МГц (20 Мбит/с) | Level 4 | Level ІV | Category 4 | Category ІV |
100 МГц (100 Мбит/с) 155 МГц (155 Мбит/с) | Level 5 | Level V | Category 5 | Category V |
Кабель “витая пара” категории 3 применяется в локальных низкоскоростных сетях со скоростью до 20 Мбит/с на расстоянии до 100 м. Кабель категории 5 также применяется на расстояниях 100-200 м, но со значительно более высокой скоростью передачи.
Коаксиальный кабель представляет собою центральный медный провод, окруженный слоем изолирующего материала (полиэтилена), который заключен внутри второго проводника в виде оплетки. Вся конструкция защищена от механических повреждений пластиковой оболочкой. По сравнению с “витой парой” коаксиал обладает значительно большей пропускной способностью и помехозащищенностью.
Выпускаются тонкий узкополосный и толстый широкополосный коаксиальные кабели. С помощью тонкого кабеля можно передавать информацию на расстояния до 10 км со скоростью до 50 Мбит/с. Толстый кабель имеет параметры 50 км и 300-500 Мбит/с, соответственно. Лучшие характеристики и стоят дороже. К недостаткам следует отнести большие по сравнению с “витой парой” размеры и вес. Следствием этого является сложность монтажа и обслуживания, что и привело к снижению популярности использования в качестве среды Физического уровня.
Оптоволоконный кабель конструктивно весьма прост, но требует профессионального монтажа. Он состоит из волокон диаметром от единиц до сотен микрон, окруженных твердым покрытием и помещенных в защитную оболочку. Ночной светильник, имитирующий салют, и есть пучок таких волокон без внешней общей оболочки. Вначале оптоволоконные кабели изготавливались из чистого кварцевого стекла, но сейчас уже разработаны технологии на основе пластмассы. Оболочка световода выполняет функцию зеркала для обеспечения эффекта полного внутреннего отражения. Источником распространяемого по кабелю света является светодиод, а на другом конце детектор преобразует световые колебания в электрические.
Внешние электромагнитные поля никак не искажают световые сигналы, поэтому оптоволоконный кабель хорошо защищен от помех. Диапазон пропускной способности у различных видов оптического волокна довольно широк. Однако даже нижней границы современные технологии передачи достигнуть не могут, так что есть неиспользуемый пока ресурс. В установке оптоволоконный кабель не сложен, но требует профессиональных приспособлений для сопряжения соседних отрезков кабеля и высокой квалификации исполнителей. Сочетание высоких свойств оптоволоконного кабеля даже при пока относительно высокой цене обусловило растущую популярность его использования.
Окружающее пространство – атмосфера, стратосфера, ближний космос - являет собой особый случай: здесь сама среда передачи обычно является общественным достоянием. Именно поэтому ее использование тщательно регулируется в пределах каждого географического региона государственными органами и международными соглашениями. В отличие от других сред передачи, которые при необходимости можно наращивать, окружающее пространство, по сути, ограниченно. Если в эфире тесно, то можно только мешать друг другу. Степень помехоустойчивости окружающего пространства зависит от частоты. На низких частотах велики помехи от разрядов молний и электротранспорта, на высоких – от дождя, тумана, состояния ионосферы. Самая большая сложность при установке – получение лицензии на использование выделенной полосы частот. И все-таки популярность этого способа передачи растет. К началу ХХI в. практически вся планета опутана сотами беспроводной связи.
И тем не менее, сегодня в локальных сетях различных топологий чаще применяются кабельные среды передачи данных. Сравнительные их характеристики представлены в табл. 5.3.
Таблица 5.3
Сравнительные характеристики кабельных сред передачи данных
Характе-ристика | Тип среды передачи | |||
“витая пара” | коаксиал тонкий | коаксиал толстый | оптоволоконный кабель | |
Примене-ние в сетях топологий | Кольцо, звезда, шина, дерево | Шина, дерево, реже - кольцо | Шина, дерево | Кольцо, звезда |
Максим. число узлов сети | До 255 | До 1024 | 2500 и более | От 2 до 8 |
Максим. длина, км | 10 ÷ 25 | 50 ÷ 80 | 2 ÷ 10 | |
Максим. пропускная способность (скорость) Мбит/с | 1 ÷ 10 | 10 ÷ 50 | До 500 | 500 на 10 км 1500 на 8 км до 5*10 3 на 5 км |
Основные преиму-щества | Низкая стоимость, можно использовать существующие телефонные линии | Низкая цена, простота установки | Широкое вещание, высокая помехозащи-щенность | Смешанный трафик, абсолютная защита от шумов, защита от несанкционированного доступа |
Основные недостат-ки | Узость полосы, слабая защита от помех и несанкционированного доступа. Необходима механическая защита, сложность поиска разрывов и заземлений | Стабильная работа при нагрузке до 40 %, требует защиты от механичес-ких повреждений и несанкцио-нированного доступа | Повышенные цена и затраты на прокладку. Необходимы разно-частотные модемы для оконечных систем | Высокая цена, для установки необходим квалифицированный персонал. Коммерчески пока недоступен |
Рассмотрим некоторые технические параметры передачи по кабельным линиям связи.
Локальные сети строятся, в основном, с использованием кабельных линий связи. Любая кабельная линия описывается следующими параметрами передачи: коэффициентом распространения сигнала (iw) и волновым сопротивлением Z в (iw). По этим параметрам можно определить ток и напряжение в любой точке кабельной линии. Параметры передачи связаны с первичными параметрами линии – активным сопротивлением R, индуктивностью L, емкостью С и проводимостью изоляции G следующими соотношениями:
.
Сигналы, передаваемые по линиям, имеют широкий частотный спектр, поэтому учет частотной зависимости весьма актуален. Частотные зависимости сопротивления R и индуктивности L кабеля определяются в основном процессами перераспределения тока в токопроводящих жилах из-за поверхностного эффекта и эффекта близости (рис. 5.2).
Поверхностный эффект заключается в перераспределении тока в проводнике при взаимодействии основного тока с вихревыми токами, наведенными основным через внутреннее магнитное поле. В результате поверхностного эффекта возрастает плотность тока в поверхностных слоях проводника. Так, в медном проводнике на частоте 100 кГц толщина поверхностного слоя, в котором концентрируется ток, составляет 208 мкм, а на 1 МГц – 66 мкм. Таким образом, уже на частотах в несколько десятков килогерц толщина токопроводящего слоя много меньше диаметра проводника. Поверхностный эффект приводит к росту активного сопротивления и уменьшению индуктивности с ростом частоты.
Эффектом близости называется перераспределение тока из-за взаимодействия тока, протекающего по проводнику, с вихревыми токами, наводимыми внешним магнитным полем. При передаче сигнала по кабелю в двух проводниках, образующих замкнутую цепь, проходят токи противоположных направлений. Влияние полей обоих проводников приводит к увеличению плотностей токов на поверхностях проводников, обращенных друг к другу. В коаксиальной паре, вследствие эффекта близости в центральной жиле, ток концентрируется на внешней поверхности аналогично действию поверхностного эффекта, а во внешнем проводнике ток концентрируется на внутренней поверхности, как показано на эпюрах
Рис.5.2. Перераспределение тока из-за поверхностного эффекта и
эффекта близости
Обратите внимание! Внешние поля вызывают появление токов, протекающих в основном по наружной поверхности внешнего проводника. Вследствие эффекта близости с ростом частоты ω пути сигнальных и мешающих токов во внешнем проводнике разделяются – происходит самоэкранирование кабеля (этот момент изображен на эпюрах). Это и приводит к возрастанию защищенности коаксиальной пары от внешних помех с увеличением частоты передаваемого сигнала. Отсюда и бытовое название внешнего проводника коаксиальной пары – экран. Правда, низкочастотные поля линий электропередач и электрического транспорта экранируются плохо.
Влияние эффекта близости на активное сопротивление и индуктивность проводников кабельной пары аналогично действию поверхностного эффекта: с ростом w R увеличивается, L – уменьшается.
При увеличении частоты сигнала возрастает и комплексное сопротивление Z n поверхностного слоя, где концентрируется протекающий по проводнику ток. С учетом этого обстоятельства параметры передачи линии будут определяться как
;
;
,
где ρ 1,2 и μ 1,2 – значения удельного сопротивления и магнитной проницаемости проводников пары, соответственно.
Из последних формул следует, что волновое сопротивление кабеля на низких частотах увеличивается по модулю. С увеличением частоты волновое сопротивление становится чисто активным и постоянным ). Затухание кабеля пропорционально корню квадратному из частоты. Все рассмотренное относится ко всем электрическим кабелям.
Перейдем к рассмотрению свойств каждой среды передачи.
Кабель “витая пара” . Цифровые линии передачи данных организуются по кабелям “витая пара” на местных, межцеховых и межгородских сетях. На коротких расстояниях в единицы километров применяются многопарные телефонные кабели типа Т с диаметром жил 0,4-0,7 мм, изоляцией в виде пористой бумажной массы или спиралью намотанной бумажной ленты, парной скруткой жил. В одном кабеле типа Т число пар может достигать 1200 (для городской прокладки между жилыми домами и АТС). Могут также применяться многопарные кабели марки ТП с полиэтиленовой изоляцией. Для малонагруженных линий применяются кабели марки КСПП с диаметром жил 0,9 мм упрощенной конструкции, с малым числом жил (до четырех четверок) в полиэтиленовой изоляции. На средних дистанциях до 10 км могут использоваться одночетверочные кабели марки ЗКП с полиэтиленовой изоляцией. Скрутка четырех жил (а не двух) повышает помехозащищенность.
В кабелях основным видом помех являются переходные влияния между сигналами, передаваемыми по различным парам проводников одного кабеля. Предельная длина участка регенерации для цифровых линий определяется из условия обеспечения минимально допустимой величины защищенности от переходных помех. Взаимное влияние оценивается величиной переходного затухания на ближнем А 0 и дальнем концах участка: ;
,
где индекс 1 относится к влияющей цепи, а индекс 2 – к цепи, подверженной влиянию.
Схема взаимного влияния между линиями в кабеле “витая пара” выглядит так (рис. 5.3):
Рис. 5.3. Взаимное влияние линий в кабеле
Величина переходного влияния в кабелях “витая пара” зависит не только от длины участка, но и от частоты передаваемого сигнала. Эта зависимость также носит характер возрастания влияния с ростом частоты.
Предельные нижние значения переходного затухания (в децибелах) для кабелей разных категорий приведены в табл.5.4.
Таблица 5.4
Границы переходного затухания в кабелях различных категорий, дБ
Частота, МГц | Категория | ||
10,0 | 11,5 | 7,5 | 7,0 |
20,0 | - | 11,0 | 10,3 |
100,0 | - | - | 24,0 |
Коаксиальные кабели. Линии передачи данных более высокого качества и технических характеристик организуются по коаксиальным кабелям. Наибольшее распространение получили кабели марок КМ – 4, МКТ – 4 и КМ– 8/6. Магистральный коаксиальный кабель КМ – 4 содержит 4 коаксиальные пары диаметром 2,6/9,4 мм (первое число – диаметр центральной жилы, второе – внутренний диаметр внешнего проводника) и 5 “витых” четверок жил диаметром 0,9 мм. Изоляция коаксиальных пар выполнена в виде полиэтиленовых шайб. Малогабаритный коаксиальный кабель МКТ – 4 имеет 4 коаксиальные пары диаметром 1,2/4,6 мм и пять “витых пар” с диаметром жил 0,7 мм. Изоляция в коаксиальных парах – воздушно-полиэтиленовая. Комбинированный коаксиальный кабель КМ – 8/6 содержит 8 коаксиальных пар 2,6 / 9,4 мм, 6 коаксиальных пар 1,2/4,6 мм, а также одну четверку, 8 “витых пар” и 6 отдельных жил диаметром 0,9 мм.
Поскольку защищенность коаксиальной пары от внешних помех увеличивается пропорционально корню квадратному из частоты, переходное затухание в таких кабелях нормируется на нижней частоте используемого диапазона. Так, для пары 2,6/9,4 мм переходное затухание составляет 128 дБ на частоте 300 кГц для строительной длины 600 м. Это позволяет применять однокабельную систему организации линии передачи данных.
Волоконно-оптические кабели. Эти кабели являются наиболее перспективными для линий передачи сигналов. Основные достоинства оптического волокна – низкое затухание, слабые (практически нулевые) взаимные влияния между сигналами, передаваемыми по различным волокнам одного кабеля, малая чувствительность к внешним электромагнитным полям, небольшие размеры, малый радиус допустимого изгиба, большая ширина оптического диапазона волн, дешевое сырье для изготовления волокон.
Волоконный кабель содержит одно или много оптических волокон круглого сечения, изготовленных из кварцевого стекла (или пластмассы) с переменным по сечению волокна коэффициентом преломления. Потери на затухание в кварцевом стекле минимальны в диапазоне длин волн λ = 1,0 ÷ 1,8 мкм. Вне этого интервала возрастают потери на ультрафиолетовое слева и инфракрасное справа поглощение. В спектре пропускания кварцевого стекла максимумы поглощения приходятся на значения λ = 0,95; 1,24 и 1,39 мкм. Поэтому затухание в волокне менее 1 дБ/км принципиально может быть достигнуто лишь в нескольких дискретных областях (λ = 0,8; 1,2; 1,3 и
В реальных волокнах источником потерь, кроме чистоты стекла. являются вариации толщины волокна и плотности материала, изгибы, нарушение профиля показателя преломления, качество сращивания участков или их разъемных соединений. Все это приводит к возрастанию минимального затухания кабеля до 2 ÷ 5 дБ/км.
Оптическое волокно имеет сердцевину и оболочку. Для удержания света в волокне показатель преломления сердцевины n c должен быть выше, чем у оболочки n.
В зависимости от числа типов электромагнитных волн (мод), которые могут распространяться в волокне, различают одномодовые и многомодовые световоды (рис.5.4).
В настоящее время существует три основных типа световодов, отличающихся законом распределения показателя преломления по сечению и числом распространяющихся мод: многомодовое волокно со ступенчатым изменением показателя преломления (рис. 5.4а) , многомодовое градиентное волокно с плавным изменением показателя преломления (рис. 5.4б) и одномодовое волокно со ступенчатым изменением показателя преломления (рис. 5.4в) .
В многомодовых волокнах со ступенчатым профилем диаметр сердцевины d = 50 ÷ 300 мкм, скорости распространения различных мод не выравниваются, что приводит к дисперсии до 20 нс/км. В градиентных волокнах показатель преломления изменяется по параболе, что обеспечивает выравнивание оптических длин путей различных распространяющихся мод и, как следствие, резкое уменьшение межмодовой дисперсии до
0,2 ÷ 1,0 нс/км. Полное отсутствие дисперсии может обеспечить гиперболический профиль изменения показателя преломления, но его трудно выдержать при изготовлении волокна. Одномодовый режим распространения обеспечивается при поперечных размерах сердечника волокна, соизмеримых с длиной волны, и при малых значениях разности показателей преломления
сердцевины и оболочки. Так при n c = 1,5; Δ = n c - n = 0,002 и λ = 0,85 мкм диаметр одномодового волокна составляет d = 6,8 мкм. Из-за столь малых размеров сердечника и малой величины Δ изготовление таких волокон технически достаточно сложно. Поэтому первыми были освоены в изготовле-
нии многомодовые волокна.
Рис.5.4. Типы световодов
На различных участках сетей могут использоваться волоконно-оптические кабели с различными параметрами. На участках протяженностью порядка
10 км и скоростью передачи 2-140 Мбит/с можно применить волокно с затуханием до 10 дБ/км и дисперсией в несколько нс/км. При значительно большей протяженности линии связи потери в волокне не должны превышать 3-5 дБ/км, что определяет отстояние соседних пунктов регенерации на 8-10 км. Дисперсия импульсов в таких линиях должна быть ниже 1 нс/км, что потребует применения одномодового или градиентного волокна с очень жестко заданным профилем показателя преломления.
Вопросы для самопроверки:
1. Обоснуйте свой выбор между “витой парой” категории 3 (или 4) и тонким коаксиальным кабелем для передачи данных от автоматизированной технологической линии бумагоделательной машины до ВЦ комбината.
2. Сравните взаимовлияние каналов в кабеле с несколькими витыми парами и в кабеле с несколькими оптическими волокнами.
3. Из чего складывается стоимость среды передачи кабельных сред и окружающего пространства?
4. Какова физическая природа экранирующего эффекта внешнего проводника коаксиальной пары?
5. Чем объясняется перспективность применения оптоволоконного кабеля в линиях передачи данных информационных сетей?
6. В чем отличия многомодового волокна от одномодового?
7. Как зависит затухание сигнала в кабеле “витая пара” от частоты?
8. Чем следует руководствоваться при проектировании узлов усилителей мощности (регенерации сигнала) для различных физических сред передачи?